Master of Science
Green Electronics

At A Glance

JOINT Degree By
Technical University of Munich (TUM)
Nanyang Technological University (NTU)

20 MONTHS FULL TIME PROGRAMME
Coursework in Singapore

PRACTICAL KNOWLEDGE
Compulsory Internship & Dissertation

GLOBAL PROSPECTS
Internationally Recognized Degree

INTAKE
August Every Year

TO APPLY
Apply online from 1st November at www.tum-asia.edu.sg

1 TUM is ranked as the #1 University in Germany*

1 NTU is ranked #1 in Asia for Engineering**

1 NTU is ranked #1 in the world for industry income and innovation*

8 TUM ranked #8 in the Global Employability Survey^*

50 Both TUM & NTU# are in the world’s Top 50 Universities
Technical University of Munich (TUM)

Technical University of Munich (TUM) is one of Europe's leading research universities, with around 500 professors, 10,000 academic and non-academic staff, and more than 37,000 students. Its focus areas are the engineering sciences, natural sciences, life sciences and medicine, reinforced by schools of management and education.

TUM acts as an entrepreneurial university that promotes talents and creates value for society. In that it profits from having strong partners in science and industry. It is represented worldwide with a campus in Singapore as well as offices in Beijing, Brussels, Cairo, Mumbai, and São Paulo.

Nobel Prize winners and inventors such as Rudolf Diesel and Carl von Linde have done research at TUM. In 2006 and 2012 it won recognition as a German “Excellence University.” In international rankings, TUM regularly places among the best universities in Germany.

Nanyang Technological University (NTU)

Inaugurated in 1991, Nanyang Technological University (NTU) has grown to become a full-fledged research university, and is ranked as one of the fastest-rising Asian universities in the world's top 50**. Hailing from more than 70 countries, NTU's 3,800 strong teaching and research staff contribute their dynamic perspectives and years of solid industry experience.

NTU's academic and research programmes, with real-world relevance, have reaped dividends in the form of strong support from major corporations and industry leaders, in terms of both research funding and partnerships as well as global internship opportunities for our students.

As the main Science and Technology university in Singapore, NTU has made substantial contributions to Singapore's drive for research and innovation, with the 2014 Quacquarelli Symonds (QS) ranking NTU at 10th in the World for Electrical & Electronic Engineering.

**As rated by 2013/2014 QS World University Ranking
Master of Science
Green Electronics

TUM Asia’s Master of Science in Green Electronics (MSc in GE) equips students with the comprehensive and in-depth knowledge of micro-/nano-fabrication technology, renewable energy, power semiconductors as well as organic semiconductor devices and systems.

MODULE REQUIREMENTS

18 Modules to be completed
(8 Core Modules, 4 Elective Modules, 5 Cross Discipline Modules, 1 Business & Technical English Module)

45 Contact hours for most of the Core and Elective Modules

8 Technical Core Modules to be completed by every student

Duration of the Programme: 20 months

July
5 Months
- Business & Technical English
- Core Modules
- Lab Modules
- Cross Discipline Modules

6 Months
- Core Modules
- Elective Modules
- Cross Discipline Modules

3 Months
Internship

6 Months
Master Thesis at a company, university or research institute
(Supervised by a NTU or TUM professor)

Graduation
End of Programme

Note: This outline is a general reference to the duration of study. A student’s actual duration of study may or may not follow this general reference. This outline is subject to change during the course timetable.

JOINT DEGREE
Conferred by Technical University of Munich (Germany) and Nanyang Technological University (Singapore)

APPLICATION-FOCUSED
Full-time research and application focused programme, inclusive of internship experience and Master Dissertation writing

INDUSTRY RELEVANCE
Our professors are actively involved in research and cooperation projects with leading industrial companies, allowing them to base the curriculum around the latest technological trends and knowledge

GLOBAL OPPORTUNITIES
You are able to complete your Internship and Dissertation in Munich, Singapore, or anywhere in the world to look for job opportunities globally

MODULE REQUIREMENTS

Contact hours for most of the Core and Elective Modules

Technical Core Modules to be completed by every student

Note: This outline is a general reference to the duration of study. A student’s actual duration of study may or may not follow this general reference. This outline is subject to change during the course timetable.
Module Synopsis

Core Modules

Microfabrication Technology
Photolithography technology, Photoresist technology, Advanced lithography, Metrology defect inspection and analytical technique, Chemical mechanical polishing, Chemical vapor deposition, Epitaxy, Plasma enhanced chemical vapor deposition, Atomic layer deposition. Physical vapor deposition.

Materials for Electronic Devices

Bioelectronics

Nano Technology for Energy Systems
Approaches to nanotechnology: bottom-up vs. top-down. Characterization and fabrication issues in the nanoscale. Applications of nanotechnology in electronics, optoelectronics, telecommunications, medicine, biology, mechanics and robotics. Overview of nanotechnology programs in USA, Japan and Europe. Nanomaterials and nanosystems for energy applications. Examples of nanostructured energy products: energy storage, energy harvesting, and high voltage technologies. A look into the future: electro and photocatalysis, hydrogen production and storage. Economical implications of nanotechnology in the energy field.

Microstructured Devices and Systems for Green Electronics
Basic physical effects in solid-state microstructured electronic and micromechanical devices and their application fields (micromotors, microsensors, microactuators, and microsystems). Characteristic material properties of semiconductors: Intrinsic and extrinsic electrical conductivity, mobility, charge carrier transport by drift and diffusion, carrier generation-recombination, thermal conductivity, energy domain coupling effects (thermoelectricity, piezoresistance, piezoelectricity, thermoelasticity, galvanomagnetism etc.). Basic operational principles of microdevices: pn junction, MOS field effect, unipolar and bipolar electronic devices, power devices, various transistor effects. Phenomenological transport theory: Onsager’s transport model, continuous field models of energy-coupled multi-domain systems, physics-based macro-modeling of Microsystems. Selected sensor and actuator application examples.

Optomechatronic Measurement Systems

Laboratory 1 Semiconductor Process and Device Simulation

Laboratory 2 Design and Modeling of Nanodevices

Cross Discipline Modules
• Aspects of Asian and European Relations Today
• Cultural, Social & Economical Aspects of Globalisation
• International Intellectual Property Law
• Selected Topics in Business Administration
• Selected Topics in Business Management

Elective Modules* (Choose 4)

Introduction to Power Systems
Structure of the power system: generation, transportation and distribution and electricity consumption. Introduction to typical power plant types including new renewable technologies. Description of the transport, distribution and control philosophy. Introduction to the electricity demand, especially due to new electronic services. Fundamental terms of energy economy and electricity markets. Introduction into smart grids.

Low Power Displays and Solid-State Lighting

Nanophotovoltaics
Third generation photovoltaics, Quantum dot tandem cells. Hot carrier cells. Multiple electron hole pair generation. Impurity and intermediate band devices.

Green Nanotechnology

Polymer Electronics

Semiconductor Power Devices

Advanced MOSFET & Novel Devices
Historical development of mainstream MOSFETs until today: economical, technological, and physical fundamentals. Properties of long channel and short channel MOSFETs, high-field effects, Shockley-Read-Hall recombination, carrier transport, drift-diffusion, Boltzmann-Maxwell equation, hydrodynamic transport, ballistics and consequences for IV-characteristics. Advanced MOSFETs, mobility-enhancement, metal-gate, FinFETs, MuGFETs. Hot-electron and band-to-band transistors, Impact-MOSFETs, Spintronic devices. Tunneling-MOSFETs, single-electron transistors.

Modern Semiconductor Devices

*Disclaimer: Elective modules available for selection are subject to availability. Unforeseen circumstances that affect the availability of the module include an insufficient number of students taking up the module and/or the unavailability of the professor. TUM Asia reserves the right to cancel or postpone the module under such circumstances.
ADMISSION CRITERIA*

- Hold a minimum 3-year Bachelor Degree in Electrical, Electronics Engineering, or equivalent degree in other relevant disciplines
- Submit one (1) notarised copy of Official or Provisional Bachelor Degree Certificate** and one (1) notarised copy of Official or Provisional Academic Transcript**
- Submit two (2) Recommendation Letters from two (2) different Professors or Employers
- Submit one (1) Letter of Motivation that indicates the reason(s) you are interested in the programme you applied for
- Submit one (1) Curriculum Vitae / Resume
- Submit TOEFL / IELTS test score (Required for applicants whose native tongue or medium of instruction from previous studies is not in English)
- Submit Akademische Prüfstelle (APS) certificate (Required for applicants who hold a degree from China, Vietnam, or Mongolia)

** The full application process is available on www.tum-asia.edu.sg/application-process.

** Documents which are not in English must be translated by a certified translator. All applicants are also required to submit an additional of three (3) notarised copies of Official or Provisional Bachelor Degree Certificate, three (3) notarised copies of full, Official Academic Transcript, and three (3) passport-sized photographs when you have accepted the offer of admissions and are being matriculated into our programme.

TO APPLY

Applications open 15 October every year. Apply online at www.tum-asia.edu.sg

FEES

<table>
<thead>
<tr>
<th>APPLICATION FEE</th>
<th>TUITION FEE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGD 79 is payable for each application per programme</td>
<td>A total of SGD 34,240*</td>
</tr>
</tbody>
</table>

- The tuition fee will be divided into 3 installments for payment and may be further divided into SGD and EURO amounts.
- The tuition fee includes teaching fees, laboratory expenses and cost of mandatory events.
- The tuition fee does not include airfare, accommodation, living expenses, and NTU miscellaneous fees (inclusive of registration, IT facilities, matriculation, examination, amenities, copy right, sports, insurance and medical). These fees will be separately paid by the student.

* The tuition fee stated is accurate as of 1 November 2017. All fees are subject to revision due to currency fluctuations, at the discretion of TUM Asia. All fees quoted are inclusive of 7% Singapore's Government Goods & Services Tax. Please refer to our website for fee updates.
Entrepreneurial Thinking and Engagement
Globalization is now an inevitable force that is here to stay. At TUM Asia, our classroom reflects this diversity with an enrolment of over 28 nationalities. This means that we foster a vibrant learning environment where the student learns not only from the textbook but also through the lives of their counterparts. Classroom ideas are synthesized across the diverse economic realities and students learn to see from multiple vantage points, creating a capacity to solve problems in creative ways. The unique joint degree programme not only equips the student with technical and scientific knowledge, but with an enriched curriculum consisting of business and cultural modules.

TUMCREATE
TUM is known for its research capabilities and strength in innovation. As such, TUM Asia spearheaded the set up of TUMCREATE as a base of research in Singapore. TUMCREATE is a joint programme between Technical University of Munich (TUM) and Nanyang Technological University (NTU). The electromobility institute brings together the expertise and innovation of Germany and Singapore, to drive innovation to shape the future of sustainable mobility by tackling issues ranging from the molecules to the megacity. Graduates from the TUM Asia Master programmes have the opportunity to apply for positions at TUMCreate, especially if your interest lies in the area of transportation and mobility research.

Highest International Standards
You will be studying with the world’s best professors from TUM and NTU, as well as experts from the industry. Not only will the student benefit from professors who are actively involved in research, one will also receive a holistic learning experience with the engagement of local lecturers from academia and industry. Our TUM modules are covered by professors who fly in from Germany on an exclusive teaching basis, to ensure that students get the undivided attention of their lecturers.

Our students will be trained in the highly innovative multi-disciplinary field of “Green Electronics”. The GE Master programme equips you to become an excellent engineer capable of addressing some of the great challenges that we are facing in the future, such as sustainable growth, clean technologies, and environmental safety. We teach you how to master the future.

Prof. Dr. Paolo Lugli
Professor, Technical University of Munich
Chair of Nanoelectronics

Studying With Us
“Talents Are Our Assets, Reputation Is Our Return”
DID YOU KNOW THAT A PART OF YOUR GADGET - COMPUTER, MOBILE PHONE, TABLET OR VIDEO CONSOLE - WAS DESIGNED OR MANUFACTURED IN SINGAPORE?

Clean Technology: Singapore’s Environmental Commitment

Singapore is the leading clean energy hub in the region and the prime location for major cleantech companies. Singapore’s strengths in manufacturing sectors such as electronics, precision engineering and chemicals, connectivity with regional markets, access to skilled international talent, and extensive supplier base are beneficial to cleantech companies. Singapore aims to further develop its cleantech industry, particularly its solar energy capabilities due to rising energy demands, climate change concerns and rapid technological advances. Other important growth areas are smart grids, green buildings, and energy efficiency.

The Semiconductor / Photovoltaics Industry in Singapore

In Singapore, electronics contributes 5.2% to the country’s gross domestic product (GDP). With the economic center gradually shifting to Asia, Singapore’s geographic location, open culture and strong fundamentals in the electronics industry makes her a choice location. The semiconductor industry in Singapore has the highest growth potential and is currently the fastest growing industry sector. The Photovoltaics industry in Singapore aims to offer a comprehensive array of renewable energy and eco-friendly technologies by developing improved clean electricity capabilities through solar technology.

Graduates Employability

Graduates in Green Electronics can seek employment in research institutes, companies related to green electronics all over the world, or go for higher studies.

Graduates can play professional roles in process development, process integration, as well as characterization, and device modelling in the Semiconductor industry.

Graduates in Green Electronics have extended career opportunities, not only in the electronics manufacturing industry, but also in the photovoltaic, low power display, nano- and bio-material, sensor & communication industry.

CleanTech Park is Singapore’s 1st eco-business park. It was developed for forward looking corporations that have embraced environmental sustainability.

Three of the world’s top six outsourced semiconductor assembly and test companies are located in Singapore.

Singapore is home to approximately 20 semiconductor assembly and test operations.

In 2014, 14 silicon IC wafer fabs, 4 compound semiconductor wafer fabs, 3 Micro-Electro-Mechanical Systems (MEMS) wafer fabs and the top 3 suppliers of hard disks are located in Singapore.

Electronics is the major industry underpinning Singapore’s economic growth, it contributes 25% of the total manufacturing value-add.

The solar sector in Asia is expected to contribute to about 30% of the global solar market by 2015, compared to just over 10% in 2010.

Singapore is well positioned within the sunbelt, receiving about 50% more radiation than temperate regions such as Japan or Germany, both major hubs for solar technology today.

“Graduates in Green Electronics Master programme provides students a unique opportunity to acquire high-level training in advanced electronics, as well as to study the interaction of electronics with the environment. The distinctive combination of these capabilities will equip the students to make key contributions in the sustainable development of all kinds of electronic devices.”

Professor Dr.-Ing. Dr. h.c. Alexander W. Koch
Chair of Measurement Systems and Sensor Technology, MST
Technical University of Munich (TUM)